Colloidal Polymerization of Polymer-Coated Ferromagnetic Cobalt Nanoparticles into Pt-Co3O4 Nanowires
نویسندگان
چکیده
In this report, functional one-dimensional (1-D) Pt-Co3O4 heterostructures with enhanced electrochemical properties were synthesized via colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs). Colloidal polymerization of dipolar nanoparticles into hollow metal-semiconductor nanowires was achieved via a consecutive galvanic replacement reaction between Co and Pt2þ precursors, followed by a nanoscale Kirkendall oxidation reaction and a calcination treatment. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark field scanning TEM (HAADF-STEM), and field-emission scanning electron microscopy (FESEM) revealed the structural and morphological evolution of the hollow cobalt oxide nanowires (D = 40 nm) with platinum nanoparticles (PtNPs; D ∼ 2 nm) entrapped within the growing oxide shell. Various calcination conditions were investigated via X-ray photoelectron spectroscopy (XPS) to obtain the optimal surface composition of the metallic Pt and semiconducting Co3O4 phases. Cyclic voltammetry of the 1-D Pt-Co3O4 heterostructures demonstrated a sevenfold enhancement in specific capacitance in comparison to the pristine Co3O4 nanowires. Preliminary results also showed that the calcined 1-D Pt-Co3O4 heterostructures catalytically hydrogenate methyl orange, and the rates of the hydrogenation were dependent on surface composition.
منابع مشابه
Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires.
The preparation of polystyrene-coated cobalt oxide nanowires is reported via the colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs). Using a combination of dipolar nanoparticle assembly and a solution oxidation of preorganized metallic colloids, interconnected nanoparticles of cobalt oxide spanning micrometers in length were prepared. The colloidal polymeri...
متن کاملPolymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains.
A novel synthetic route to polymer-coated ferromagnetic colloids of metallic cobalt has been developed. Well-defined end-functional polystyrenes were synthesized using controlled radical polymerization and used as surfactants in the thermolysis of dicobaltoctacarbonyl to afford uniform ferromagnetic nanoparticles. The presence of the polymer shell enabled prolonged colloidal stability of disper...
متن کاملDopamine wide range detection sensor based on modified Co3O4 nanowires electrode
Ultra-thin cobalt oxide (Co3O4) nanowires grown on gold coated glass substrates by the hydrothermal chemical deposition and have been used as a wide range dopamine potentiometric sensor. An anionic surfactant (sodium dodecylbenzenesulfonate) was used to achieve assisted growth procedure. Moreover, a polymeric membrane containing polyvinyl chloride as plasticized polymer, β-cyclodextrin as ionop...
متن کاملMorphological control of heterostructured nanowires synthesized by sol-flame method
Heterostructured nanowires, such as core/shell nanowires and nanoparticle-decorated nanowires, are versatile building blocks for a wide range of applications because they integrate dissimilar materials at the nanometer scale to achieve unique functionalities. The sol-flame method is a new, rapid, low-cost, versatile, and scalable method for the synthesis of heterostructured nanowires, in which ...
متن کاملSpinel-Type Cobalt Oxide (Co3O4) Nanoparticles from the mer- Co(NH3)3(NO2)3 Complex: Preparation, Characterization, and Study of Optical and Magnetic Properties
In this paper, the mer-Co(NH3)3(NO2)3 complex was used as a new precursor for synthesizing spinel-type cobalt oxide nanoparticles (Co3O4NPs).Thermal decomposition of the complex at low temperature (175 °C) resulted in the Co3O4NPs without using expensive and toxic solvents or complicated equipment. XRD, FT-IR, SEM, EDX, and TEM were employed to characterize the product, and its optical and magn...
متن کامل